Appendix B

Project Organization Chart

TUGRO

Legen	Legend:					
	Line of Reporting					
	Line of Communication					

Appendix C

Calibration Certificate for Construction Dust Monitoring Equipment

FUGRO TECHNICAL SERVICES LIMITED

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Locatio	Location : M-A3 Date of Calibration: 18-Feb-20									
Locatio	Location : S.K.H Tsoi Kung Po Secondary School Next Calibration Date: 17-May-20									
Model:	ŀ	TE-5170		S/N:		4388]	Technician. T	Ony wan
					CO	NDITIO	NS			
	Sea	Level Pres	sure (hPa):	1	026.	4	Со	rrected Press	ure (mm Hg):	770
		I empe	rature (°C):		14.	7		Ien	perature (K):	288
				CAL	IBR)RIF	ICE		
		Make:		Tisch	1	٦		Qstd Slope:	Г	2.08799
		Model:		TE-5	025A		Q	std Intercept:	F	-0.03545
	Calibr	ation Date:		21-0 2456	ct-19	_		Expiry Date:	Ľ	21-Oct-20
		0,		2100						
					CAL	IBRATIC	<u>)</u> NS			
Plate	H2O (L)	H2O (R)	H2O	Qst	td			IC	L	INEAR
No.	(in)	(in)	(in)	(m ³ /r	min)	(ch	art)	(corrected)	REGI	RESSION
18	4.80	-7.80	12.600		1.758	3 57	'.00	58.39	Slope =	27.9500
13	3.90	-6.90	10.800	· /	1.629	3 51	.00	52.24	Intercept =	7.5966
10	2.80	-5.00	7.800	· /	1.387	7 44	1.00	45.07	Corr. coeff.=	0.9925
7	1.20	-4.00	5.200		1.136	38	3.00	38.92		
5	0.20	-2.80	3.000	(0.867	′ 3 ²	2.00	32.78		
Calcul	ations:									
Qstd =	· 1/m[Sqrt(H	l2O(Pa/Pstc	d)(Tstd/Ta))	-b]						
IC = I[\$	Sqrt(Pa/Psto	d)(Tstd/Ta)]						FLOW R	ATE CHART	
Qstd =	standard fl	ow rate				70.00				
IC = cc	prrected cha	art response	;			60.00	<u> </u>			
I = actument of actument of a constraints of a constraint of	ual chart res	sponse td slope			_					\mathbf{Z}
b = ca	librator Qst	d intercept			(C)	50.00				
Ta = a	ctual tempe	rature durin	g calibratio	n (deg	onse	40.00	ļ			
Pa = actual pressure during calibration (mm H Tstd – 298 deg K			nm Hg	espc						
Pstd =	760 mm Hç	J			art R	30.00				
For su	bsequent o	calculation	of sample	r flow	al Ch	20.00				
1/m((l)	[Sqrt(298/T	av)(Pav/760))]-b)		Actue	10.00				
m = s	ampler slor)e			٩	10.00				
b = sa	ampler inter	rcept				0.00	<u> </u>			
I = ch	art respons	e e tomporat				0.0)00	0.500	1.000 1.50	0 2.000
Pav =	daily average	je temperati de pressure	ure					Standard FI	ow Rate (m ³ /min))
		J - 1		'						

RECALIBRATION DUE DATE:

October 21, 2020

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	October 21	., 2019	Roots	meter S/N:	438320	Ta:	295	°K
Operator:	Jim Tisch					Pa:	744.2	mm Hg
Calibration	Model #:	TE-5025A	Calil	brator S/N:	2456			0
					I			1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4200	3.2	2.00	
	2	3	4	1	1.0180	6.3	4.00	
	3	5	6	1	0.9030	7.9	5.00	
	4	/	8	1	0.8620	8.8	5.50	
		9	10	T	0.7120	12.6	8.00	
				Data Tabula	ition			
			Laul Pa	V Tstd \				
	Vstd	Qstd	√ ^{∆H} (Pstd	/ Ta /		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9849	0.6936	1.406	56	0.9957	0.7012	0.8904	
	0.9808	0.9635	1.9892		0.9915	0.9740	1.2592	
	0.9787	1.0838	2.224	40	0.9894	1.0957	1.4078	
	0.9775	1.1340	2.332	25	0.9882	1.1464	1.4765	
	0.9724	1.3658	2.813	31	0.9831	1.3807	1.7808	
		m=	n= 2.08799 b= -0.03545		QA	m=	1.30746	
	QSTD	b=				b=	-0.02244	
	r= 0.999			989		r=	0.99989	
				Calculatio	ns			
	Vstd=	∆Vol((Pa-∆P)	/Pstd)(Tstd/Ta	a)	Va=	∆Vol((Pa-∆l	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time		
			For subsequ	ent flow ra	te calculatio	ns:		
	Qstd= $1/m \left(\left(\sqrt{\Delta H} \left(\frac{Pa}{Pstd} \right) \right) \left(\frac{Tstd}{Ta} \right) \right)$))-b)	Qa=	1/m ((√ΔH	l(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	298.15	Ϋ́K		Ι		RECA	LIBRATION	
Pstd:	760 1	mm Hg				1	1	
	K	ey	112.0)		US EPA reco	mmends ar	nual recalibratio	on per 1998
AH: calibrate	tor manomet	er reading (in	n H2O)		40 Code	ot Federal F	Regulations Part 5	ou to 51,
Ta: actual at	solute temp	erature (°K)	mm Hg)		Appendix E	s to Part 50,	Reference Meth	od for the
Pa: actual ha	arometric pr	essure (mm l	-lg)		Determinat	ion of Susp	ended Particulate	e Matter in
o: intercept	in incurre pr		.0/		the	e Atmosphe	re, 9.2.17, page 3	30
m: slope				L				

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

SIBATA SCIENTIFIC TECHNOLOGY LTD. 1-1-62, Nakane, Soka, Saitama, 340-0005 Japan

TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: May 28th, 2019

:	Digital Dust Indicator, Model LD-3B
:	080000-42
\$	1 unit
:	647594
:	0.001 mg/m3
:	752CPM
:	May 24th, 2019

We hereby certify that the above mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Tong Zhang

Tong Zhang Overseas & New Business Group Overseas Sales Department

Appendix D

Calibration Certificate for Construction Noise Monitoring Equipment

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0905 03-03	Page:	1	of	2
Item tested					
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Acoustical Calibrator (Class-1) CASELLA CEL-120/1 4358443 / N-36				
Item submitted by					
Curstomer: Address of Customer: Request No.: Date of receipt:	Furgo Technical Services Limited				
Date of test:	09-Sep-2019				
Reference equipmen	t used in the calibration				

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	03-May-2020	SCL
Preamplifier	B&K 2673	2239857	17-May-2020	CEPREI
Measuring amplifier	8&K 2610	2346941	05-Jun-2020	CEPREI
Signal generator	DS 360	61227	10-May-2020	CEPREI
Digital multi-meter	34401A	US36087050	08-May-2020	CEPREI
Audio analyzer	8903B	GB41300350	13-May-2020	CEPREI
Universal counter	53132A	MY40003662	10-May-2020	CEPREI

Ambient conditions

Temperature:	21 ± 1 °C
Relative humidity:	55 ± 10 %
Air pressure:	1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

eng

Approved Signatory:

09-Sep-2019 Company Chop:

Comments: The results reported in his certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

El Seils & Malenals Engineering Co. Ltd.

Form No CARP156-1/Lesue 1/Rev C/01/05/2001

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No 1

19CA0905 03-03

Page:

of 2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	d8	dB	dB
1000	94.00	93.39	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2.

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be

0.005 dB

Estimated expanded uncertainty

3. Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 1000.0 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2	

4. Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was

At 1000 Hz	TND = 0.9 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	1
Calibrated by:	1~6	Checked by:	AUM
Date:	09-Sep-2019	Date:	Shek Kworlg Tat 09-Sep-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Solis & Materials Engineering Co. Ltd.

Form No CARP156.26ssue 1/Rev C/01/05/2025

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0905 03-02			Page	1	of	2
Item tested							
Description:	Sound Level Mete	er (Type 1)	Micr	ophone			
Manufacturer:	CASELLA	2020/28/22/201		(1			
Type/Model No.:	CEL-63X		CEL	-251			
Serial/Equipment No.:	4181568		0345	56			
Adaptors used							
Item submitted by							
Customer Name:	Furgo Technical S	Services Limited					
Address of Customer:	1. (993) 1993 (997) 199 17 5 9						
Request No.:							
Date of receipt:	05-Sep-2019						
Date of test:	09-Sep-2019						
Reference equipment	used in the calib	ration					
Description:	Model:	Serial No.	Expi	ry Date:		Traceal	ble to:
Multi function sound calibrator	B&K 4226	2288444	23-A	ug-2020		CIGISME	EC
Signal generator	DS 360	61227	26-D	ec-2019		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Relative humidity:	55 ± 10 %						
Air pressure:	1000 ± 5 hPa						
Test specifications							

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory

10-Sep-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-Masue 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0905 03-02

2 of

1. **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Co	verage Factor
Self-generated noise	А	Pass	0.3	
	C	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range . Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
The second second second second	c	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
100 M 100	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3. Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Solo & Materials Engineering Co., Ltd.

Form No CARP152-2/Josue 1/Rev C/01/52/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Test Data for So	und Level M	eter				Page 1 of 5
Sound level m	eter type:	CEL-63X	Serial No.	4181568	Date	09-Sep-2019
Microphone	type:	CEL-251	Serial No.	03456		
					Report	: 19CA0905 03-02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	15.9	dB
Noise level in C weighting	19.8	dB
Noise level in Lin	26.5	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Deviation		
interesting and a second	non-integrated	integrated		non-integrated	integrated	
dB	dB	dB	+/- dB	dB	dB	
94.0	94.0	94.0	0.7	0.0	0.0	
99.0	99.0	99.0	0.7	0.0	0.0	
104.0	104.0	104.0	0.7	0.0	0.0	
109.0	109.0	109.0	0.7	0.0	0.0	
114.0	114.0	114.0	0.7	0.0	0.0	
119.0	119.0	119.0	0.7	0.0	0.0	
124.0	124.0	124.0	0.7	0.0	0.0	
129.0	129.0	129.0	0.7	0.0	0.0	
134.0	134.0	134.0	0.7	0.0	0.0	
135.0	135.0	135.0	0.7	0.0	0.0	
136.0	136.0	136.0	0.7	0.0	0.0	
137.0	137.0	137.0	0.7	0.0	0.0	
138.0	138.0	138.0	0.7	0.0	0.0	
139.0	139.0	139.0	0.7	0.0	0.0	
140.0	140.0	140.0	0.7	0.0	0.0	
89.0	89.0	89.0	0.7	0.0	0.0	
84.0	84.0	84.0	0.7	0.0	0.0	
79.0	79.0	79.0	0.7	0.0	0.0	
74.0	74.0	74.0	0.7	0.0	0.0	
69.0	69.0	69.0	0.7	0.0	0.0	
64.0	64.0	64.0	0.7	0.0	0.0	
59.0	59.0	59.0	0.7	0.0	0.0	
54.0	54.0	54.0	0.7	0.0	0.0	
49.0	48.9	48.9	0.7	-0.1	-0.1	

ti ISots Materials Erg. Co. Ltd.

Term Sol. CAWS 1523 may 1 Nev. 10 01 02 2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號科達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Page 2 of 5

Test Data for Sound Level Meter

Sound level m	eter type:	CEL-63X		Serial No.	4181568	Date	09-Sep-2019
Microphone	type:	CEL-251		Serial No.	03456	Paport	100 00005 02 02
44.0	1	44.0	44.0	0.7		0.0	0.0
39.0		39.0	39.0	0.7		0.0	0.0
34.0		34.0	34.0	0.7		0.0	0.0
33.0		33.0	33.0	0.7		0.0	0.0
32.0		32.0	32.0	0.7		0.0	0.0
31.0		31.1	31.1	0.7		0.1	0.1
30.0		30.1	30.1	0.7		0.1	0.1

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	*/- dB	dB
20,140	30.0	30.1	0.7	0.1
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+		dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.7	1.5	1,5	0.1
63.1	94.0	67.8	67.8	1.5	1.5	0.0
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	94.9	1.0	1.0	-0.1
7943.0	94.0	92.9	92.6	1.5	3.0	-0.3
12590.0	94.0	89.7	88.3	3.0	6.0	-1.4
requency weigh	ting C:					
Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+		dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	93.1	1.5	1.5	-0,1
125.9	94.0	93.8	93.8	1.0	1.0	0.0

ration Mounds Eng. Co. Ltd.

Form Net. CAWS 152-Inne 1-Rev. 8011 (2:2007

The copyright of this report is owned by the Soils & Materials Engineering Co., Ltd. It may not be reproduced except with prior written approval of the issuing laboratory.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12模

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Test Data for Sou	ind Level Me	ter						Page 3 of
Sound level me	ter type:	CEL-63X		Serial No.	418	1568	Date	09-Sep-2019
Microphone	type:	CEL-251		Serial No.	034	56		
							Report:	19CA0905 03-02
251.2	94.0	94.	0	94.0	1.0	1.0	0.0	
501.2	94.0	94.	0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.	8	93.8	1.0	1.0	0.0	
3981.0	94.0	93.	2	93.1	1.0	1.0	-0.1	
7943.0	94.0	91.	0	90.7	1.5	3.0	-0.3	
12590.0	94.0	87.	8	86.4	3.0	6.0	-1.4	
Frequency weig	hting Lin:	0						
Frequency	Ref. le	vel Expecte	d level	Actual level	Tolera	nce(dB)	Deviation	n
Hz	dB	dB	3	dB	+		dB	
1000.0	94.0	94.	0	94.0	0.0	0.0	0.0	
31.6	94.0	94.	0	93.9	1.5	1.5	-0.1	
63.1	94.0	94.	0	94.0	1.5	1.5	0.0	
125.9	94.0	94.	0	94.0	1.0	1.0	0.0	
251.2	94.0	94.	0	94.0	1.0	1.0	0.0	
501.2	94.0	94.	0	94.0	1.0	1.0	0.0	
1995.0	94.0	94.	0	94.0	1.0	1.0	0.0	
3981.0	94.0	94.	0	93.9	1.0	1.0	-0.1	

TIME WEIGHTING FAST TEST

94.0

94.0

7943.0

12590.0

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

94.0

93.8

1.5

3.0

3.0

6.0

0.0

-0.2

Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation	
dB	dB	dB	+		dB	
136.0	135.0	134.9	1.0	1.0	-0.1	

94.0

94.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Def lovel	Expected level	Actual lough	Tolora	aca(dB)	Deviation
isel, level	Cxpected level	Actual level	ruerai	ice(ob)	Deviation
dB	dB	dB	+		dB
136.0	131.9	131.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level Response to 10 ms Response to 100 us Tolerance Deviation

111Sols Materials Eng. Co., Dal.

Form No. 17 WK 122 June 1 Bey, B 14 02 2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Sound level n	neter type:	CEL-63X	Serial No.	4181568	Date	09-Sep-2019	
Microphone type:		CEL-251	Serial No.	03456		10000000000000000000000000000000000000	
og nættikk seksible			-2007. P. 1997. F. 10. (1999)	6/21/15/2/A	Report:	19CA0905 03-02	
	dB	dB	dB	+/- dB	dB		
139.0		139.0	139.5	2.0	0.5		
Vegative pola	rities:						
R	ef. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation	n	
dB		dB	dB	+/- dB	dB		
139.0		139.0	139.5	2.0	0.5		

RMS ACCURACY TEST

The RMS detector accuracy is tester Test frequency: Amplitude: Burst repetition frequency: Tone burst signal		d on the reference range for a crest factor of 3. 2000 Hz 2 dB below the upper limit of the primary indicator range. 40 Hz 11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)					
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation		
Time wighting	dB	dB	indication(dB)	+/- dB	dB		
Slow	136.0+6.6	136.0	135.7	0.5	-0.3		

TIME WEIGHTING IMPULSE TEST

Time weighting I is teste	ed on the reference range	(Set the SLM to LAImax)
Test frequency:	2000 Hz	
Amplitude:	The upper limit of th	e primary indicator range.
and a cinucaidal burst of du	ration 5 mer	A BRANCED DE PRESENTE PRESENTATION CONTRACTOR

Single sinusoidal burst of duration 5 ms:

Ref. Level	Ref. Level Single burst indic		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	131.2	130.1	2.0	-1.1

Repeated at 100 Hz

Ref. Le	evel	Repeated bu	rst indication	Tolerance	Deviation
dB		Expected (dB)	Actual (dB)	+/- dB	dB
140.0	0	137.3	136.9	1.0	-0.4

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Repetition Time Level of Expected Actual Tolerance Deviation	
top burst log log	Remarks
msec dB dB dB +/- dB dB	
1000 110.0 110.0 109.9 1.0 -0.1 6	60s integ.
10000 100.0 100.0 99.9 1.0 -0.1 6	6min. integ.

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz

sciSols Materiali Eng. Co., Lid.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

1.7

0.0

SMECLab

Test Data for So	und Level Me	ter					Page 5 of 5
Sound level me Microphone	eter type: type:	CEL-	63X 251	Serial No. Serial No.	4181568 03456	Date	09-Sep-2019
	100	036563	ero Kehe:	0.000000000	00055	Report:	19CA0905 03-02
Integration time	e:	10 se	€C				
The integrating	sound level	meter s	et to Leq:				
Duration	Rms lev	rel of	Expected	Actual	Tolerance	Deviatio	n
msec	tone burs	at (dB)	dB	dB	+/- dB	dB	
10	138.	0	108.0	107.8	1.7	-0.2	
The integrating	sound level	meter s	et to SEL:				
Duration	Rms lev	el of	Expected	Actual	Tolerance	Deviation	n
msec	tone burs	t (dB)	dB	dB	+/- dB	dB	

118.0

10.0	138.0	118.0	

OVERLOAD INDICATION TEST

10.0

For SLM capable of operating in a non-integrating mode.

Test frequency: Amplitude: Burst repetition frequency: Tone burst signal:		2000 Hz 2 dB below the upper limit of the primary indicator range. 40 Hz 11 cycles of a sine wave of frequency 2000 Hz.				
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation	
at overload (dB)	1 dB	3 dB	dB	dB	dB	
134.9	133.9	130.9	3.0	1.0	0.0	

For integrating SLM, with the instrument indicating Leq.

For integratin The test tone Test frequer Integration t	g SLM, with the ins burst signal is sup ncy: ime:	trument indicating Le erimposed on a base 4000 Hz 10 sec	eq and set to the re line signal corresp	ference range. The onding to the lower	test signal as followin limit of reference rang
Single burst	duration:	1 msec			
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
141.3	140.3	100.3	100.1	2.2	-0.2

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation	
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	78.0	1.0	1.0	0.1	
8000	92.9	92.6	1.5	3.0	-0.3	

-----END------

to Sole Marsula Eng Eu. Lat.

Four No. CAWS 1523mar UKes 10/01/12/2007

Appendix E

Environmental Monitoring

UGRO

Schedule

Project: Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

Sun	Mon	Tue	Wed	Thur	Fri	Sat
1 MARCH	2	3	4 Dust Monitoring Noise Monitoring (08:30-12:30)	5	6	7
8	9	10 Dust Monitoring Noise Monitoring (08:30-12:30)	11	12	13	14
15	16 Dust Monitoring Noise Monitoring (13:00-17:30)	17	18	19	20 Dust Monitoring (08:30-12:30)	21
22	23	24 Dust Monitoring Noise Monitoring (13:00-17:30)	25	26	27	28
29	30 Dust Monitoring Noise Monitoring (08:30-12:30)	31				

Impact Monitoring Schedule for the Reporting Period (March 2020)

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition;

2. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days;

3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours;

4. Monitoring Location: M-A3 and M-N3: SKH Tsoi Kung Po Secondary School.

Project: Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 April	2	3 Dust Monitoring (08:30-12:30)	4
5	6	7	8	9 Dust Monitoring Noise Monitoring (08:30-12:30)	10	11
12	13	14	15 Dust Monitoring Noise Monitoring (13:00-17:30)	16	17	18
19	20 Dust Monitoring Noise Monitoring (13:00-17:30)	21	22	23	24 Dust Monitoring (08:30-12:30)	25
26	27	28	29 Dust Monitoring Noise Monitoring (13:00-17:30)	30		

Impact Monitoring Schedule for the Next Reporting Period (April 2020)

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition;

2. Dust Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days;

- 3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours;
- 4. Monitoring Location: M-A3 and M-N3: SKH Tsoi Kung Po Secondary School.

Appendix F

Action and Limit Levels for Construction Dust and Noise Monitoring

Table F-1 Action and Limit Levels for 1-hour TSP

Station ID	Location	Action Level	Limit Level
M-A3	SKH Tsoi Kung Po Secondary School	333 µg/m³	500 µg/m³

Table F-2 Action and Limit Levels for 24-hour TSP

Station ID	Location	Action Level	Limit Level
M-A3	SKH Tsoi Kung Po Secondary School	153 µg/m ³	260 µg/m³

Table F-3 Action and Limit Levels for Construction Noise (0700 – 1900 hour of normal weekdays)

Station ID	Location	Action Level	Limit Level
M-N3	SKH Tsoi Kung Po Secondary School	When one documented compliant is received	For Schools: 70dB(A) during normal teaching period and 65 dB(A) during examination periods

Appendix G

Construction Dust Monitoring Results and Meteorological Observations

1-hour TSP Monitoring Result for Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

	1-hour TSP (µg/m³)											
Date	Start Time	1st hr	2nd hr	3rd br	Average	Action Level	Limit Level	Weather				
4-Mar-20	09:00	56	44	54	51			Fine				
10-Mar-20	09:00	84	94	80	86			Fine				
16-Mar-20	13:00	80	94	84	86	222	500	Fine				
20-Mar-20	09:00	84	80	76	80	333	500	Fine				
24-Mar-20	09:00	50	40	44	45			Fine				
30-Mar-20	09:00	56	62	72	63			Fine				
Average		69	69									
Max 94		94										
Min 40			40									

M-A3 - SKH Tsoi Kung Po Secondary School

24-hour TSP Monitoring Result for Contract No. HY/2018/08 Central Kowloon Route – Central Tunnel

Start Date	Weather	Air Temperature (K)	Atmospheric Pressure,	Filter W	Filter Weight (g)		Sampling Time	Flow Rate (m ³ /min.)		Average flow	e Total volume	Conc.	Action Level	Limit Level
	Condition		Pa (mmHg)	Initial F	Final	weight (g)	(hrs)	Initial	Final	(m ³ /min)	(m ³)	(ug/iii)	(ug/m ³)	(ug/m ³)
4-Mar-20	Fine	294.5	763.6	2.6907	2.7737	0.0830	24	1.50	1.49	1.50	2153.9	39		
10-Mar-20	Fine	296.4	760.0	2.6524	2.7051	0.0527	24	0.79	0.79	0.79	1138.4	46		
16-Mar-20	Fine	293.3	764.8	2.6615	2.7838	0.1223	24	1.15	1.14	1.15	1651.2	74	153	260
20-Mar-20	Fine	294.2	761.6	2.6970	2.8102	0.1132	24	1.15	1.14	1.14	1647.5	69	155	200
24-Mar-20	Fine	295.8	760.7	2.6564	2.7638	0.1074	24	1.29	1.24	1.26	1820.8	59		
30-Mar-20	Fine	293.3	759.2	2.7118	2.7946	0.0828	24	1.50	1.49	1.50	2152.9	38		
											Min	38		
											Max	74		
											Average	54		

M-A3 - SKH Tsoi Kung Po Secondary School

Note: <u>Underline</u>: Exceedance of Action Level <u>Underline and Bold</u>: Exceedance of Limit Level

Wind Speed recorded at King's Park Meteorological Station on 4, 5 and 10 Mar 2020

Wind Speed recorded at King's Park Meteorological Station on 11, 16 and 17 Mar 2020

Wind Speed recorded at King's Park Meteorological Station on 20, 21 and 24 Mar 2020

23 23:50

30/03/2020

⑥ 香港天文 含 Hong Kong Observatory

Ø

29/03/2020

Wind Speed recorded at King's Park Meteorological Station on 25, 30 and 31 Mar 2020

13 14 15 16

香港時間(時) Hong Kong Time (Hour)

Wind Direction recorded at King's Park Meteorological Station on 4, 5 and 10 Mar 2020

ⓒ 春港天文 含 Hong Kong Observatory

KPC

Wind Direction recorded at King's Park Meteorological Station on 11, 16 and 17 Mar 2020

Wind Direction recorded at King's Park Meteorological Station on 20, 21 and 24 Mar 2020

Wind Direction recorded at King's Park Meteorological Station on 25, 30 and 31 Mar 2020

